Source code for brutus_cof

# -*- coding: utf-8 -*-
'''
 brutus: a set of Python modules to process datacubes from integral field spectrographs.\n
 Copyright (C) 2016,  F.P.A. Vogt
 
 -----------------------------------------------------------------------------------------
 
 This file contains functions related to the continuum fitting inside brutus, except for
 anything related to PPXF. 

 Created April 2016, F.P.A. Vogt - frederic.vogt@alumni.anu.edu.au
'''
# ----------------------------------------------------------------------------------------

import numpy as np
from statsmodels.nonparametric.smoothers_lowess import lowess

# ----------------------------------------------------------------------------------------

[docs]def lowess_fit(spec, lams, frac=0.05, it=5): '''Fit a spectrum using a Locally Weighted Scatterplot Smoothing approach. Wraps around statsmodels.nonparametric.smoothers_lowess.lowess(). :Args: spec: 1-D numpy array The input spectrum. lams: 1-D numpy array The corresponding wavelength array. frac: float [default:0.05] Between 0 and 1. The fraction of the data used when estimating each y-value. [From the statsmodel lowess function] it: int [default:5] The number of residual-based reweightings to perform. [From the statsmodel lowess function] :Returns: out: 1-D array The fitted array, with size equal to spec. :Notes: This function fits a spectrum using a LOWESS (Locally Weighted Scatterplot Smoothing) technique, described in: Cleveland, W.S. (1979) Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association 74 (368): 829-836. This is robust to outliers (hot pixels, cosmics), and is also efficient to ignore emission lines. frac=0.05 and it=5 seem to work very fine for spectra of any SNR, both lousy with no continuum, and good ones in the center of galaxies - modulo the stellar absorption features which are of course "ignored" by the LOWESS routine. ''' # Only do the fit if there is some signal. Avoid an ugly warning in the prompt. if np.all(np.isnan(spec)): fit = np.zeros_like(spec) * np.nan else: fit = lowess(spec,lams,frac=frac, it=it, is_sorted=True, missing = 'drop', return_sorted=False) return fit
# ----------------------------------------------------------------------------------------