Source code for brutus_red

# -*- coding: utf-8 -*-
'''
 brutus: a set of Python modules to process datacubes from integral field spectrographs.\n
 Copyright (C) 2016,  F.P.A. Vogt
 
 -----------------------------------------------------------------------------------------
 
 This file contains several function and tools used by the brutus routines to correct
 emission line fluxes for galactic and extragalactic reddening.

 Created April 2016, F.P.A. Vogt - frederic.vogt@alumni.anu.edu.au
'''
# ----------------------------------------------------------------------------------------

import numpy as np
import scipy as sp
import scipy.interpolate as interpolate
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from brutus_metadata import *

# ----------------------------------------------------------------------------------------      

[docs]def D_fm90(x,gamma,x0): ''' The UV points from Fitzpatrick & Massa (1990). :Args: x: float Wavelength in 1/microns. gamma: float The gamma factor. x0: float The x0 factor. ''' return x**2/((x**2-x0**2)**2+x**2*gamma**2)
# ----------------------------------------------------------------------------------------
[docs]def F_fm90(x): '''The UV points from Fitzpatrick & Massa (1990). :Args: x: float Wavelength in 1/microns. ''' out = np.zeros_like(x) for (i,item) in enumerate(x): if item >= 5.9: out[i] = 0.5392*(item-5.9)**2 + 0.05644*(item-5.9)**3 else : out[i] = 0.0 return out
# ----------------------------------------------------------------------------------------
[docs]def f99_alebv(lams,rv=3.1): # lams in Angstroem '''The spline-interpolated Fitzpatrick, PASP (1999) Alambda/E(B-V) function. :Args: lams: 1-D numpy array of floats The wavelengths in Angstroem. rv: float [default: 3.1] The Rv value. ''' my_lams = 1.0e4/lams # Make sure this is an array, or the code will crash try : len(my_lams) except : my_lams = np.array([my_lams]) # First, the anchor points (in 1/lambda) uv_anchors = np.array([3.704,3.846]) optical_anchors = np.array([1.667, 1.828, 2.141, 2.433]) ir_anchors = np.array([0.0,0.377, 0.820]) # ---- The parameters for the UV points ---- c2 = -0.824 + 4.717/rv c1 = 2.030 - 3.007 * c2 x0 = 4.596 gamma = 0.99 c3 = 3.23 c4 = 0.41 D = D_fm90(uv_anchors,gamma,x0) F = F_fm90(uv_anchors) kx_V = c1 + c2 * uv_anchors + c3 * D + c4 * F uv_spline = kx_V + rv # ---- For the optical anchors ---- optical_spline = np.zeros_like(optical_anchors) optical_spline[0] = -0.426 + 1.0044 * rv optical_spline[1] = -0.050 + 1.0016 * rv optical_spline[2] = 0.701 + 1.0016 * rv optical_spline[3] = +1.208 + 1.0032 * rv - 0.00033 * rv**2 # WARNING : typo in F99 ? # See their Table 4 ... with '-1.208', it doesn't work ! # ---- For the IR anchors ---- ir_spline = rv/3.1 * np.array([0.0,0.265,0.829]) # Ok, now, perform the spline interpolation wave = np.append(np.append(ir_anchors, optical_anchors), uv_anchors) alebv = np.append(np.append(ir_spline, optical_spline), uv_spline) interp_func = interpolate.interp1d(wave, alebv, kind='cubic', bounds_error = False) # bounds_error = False -> Will return a NaN is outside the allowed range # Finally, compute the value at the wavelengths of interest out = np.zeros_like(my_lams) # If lam > 2700, use the spline function out[lams>2700] = interp_func(my_lams[lams>2700]) # If lam <= 2700, use the fm90 function Dl = D_fm90(my_lams[lams<=2700], gamma, x0) Fl = F_fm90(my_lams[lams<=2700]) out[lams<=2700] = rv + c1 + c2 * my_lams[lams<=2700] + c3 * Dl + c4 * Fl return out
# ---------------------------------------------------------------------------------------- # Get E_lambda-V/E_B-V following Fischera & Dopita05. Unlike Vogt et al. (2013), follow # the paper more closely, and allow for varying values of Rv using polynomials given in # the text. In other words, use BOTH rv and rva to characterize the attenuation curve.
[docs]def fd05_elvebv(lams, rv = 3.08, rva = 4.3): # lams in Angstroem '''Compute E(lambda-V)/E(B-V) according to Fischera&Dopita (2005), given Rv and Rva. This function reproduces Table 1 in the article. Unlike in Appendix 1 of Vogt et al. (2013), this function relies on the polynomials defined in the text to reproduce the values of E(lambda-V)/E(B-V) for any Rv and Rva. :Args: lams: 1-D numpy array of float The wavelengths at which to evaluate the attenutation. rv: float [default: 3.08] The Rv value, following Fischera & Dopita. rva: float [default: 4.5] The Rva value, following Fischera & Dopita. :Returns: out: 1-D numpy aarray of float The value of E(lambda-V)/E(B-V), as in Table 1 and Fig.3 of the article. :Notes: By default, Rv = 3.08 and Rva = 4.3, which gives a curve vey close to that of Calzetti (2000) below the 2000 Ansgtroem bump. Thanks to R. Sutherland at ANU/RSAA for sharing his reddening code (included in MAPPINGS V), which helped me implement this function properly. ''' # Make sure this is an array (for the overall consistency) try : len(lams) except : lams = np.array([lams]) # Rv < 3.08 is probably a bad thing ... if rv < 3.08: sys.exit(" Rv <3.08 not supported !") # The wavelength nodes from Table 1 in microns lam_nodes = np.array([0.0912, 0.1053, 0.1216, 0.1550, 0.1906, 0.2175, 0.2480, 0.3000, 0.3650, 0.4400, 0.5480, 0.7200, 1.0300, 1.2390, 1.6490, 2.1920, 3.5920, 4.7770]) # Do it all for the Av=1 curves. According to the paper: # If the approximation obtained for AV= 1 is used for a turbulent medium where # AV= 10 the accuracy is better than ∼5%. # The curve for Rv=Rva=3.08 elv_ebv308a1 = np.array([12.066, 9.694, 7.328, 5.018, 5.214, 6.937, 4.573, 2.967, 1.924, 1.000, 0.000,-0.991,-1.871,-2.171,-2.498,-2.716, -2.932, -2.992]) # The x from Eqt. 8. Al/Av = (Elv/Ebv*1/Rv) + 1 xs = elv_ebv308a1/3.08 + 1.0 # The a coefficients, as polynomial using the b coefficients from Table 2. fa1 = np.poly1d([0.0, 1.64220, -3.62163, 3.42939, 0.00495676]) fa2 = np.poly1d([-2.199, 5.11725, -0.668874, -0.708645, 0.0393932]) fa3 = np.poly1d([21.5465, -19.2137, 5.17489, -0.484444, 0.0174931]) # By definition, following Par.2 in Sec 3.1.: alphav = 3.08 # Eqt. 11 m = 1 + 0.275 * (rv - alphav) # Eqt. 10 alphava = m**-1*(rva - rv) + alphav # Eqt. 9 z = (alphava-1.0)**-1 a1 = fa1(z) a2 = fa2(z) a3 = fa3(z) # Eqt. 8 alav = a1 * np.log10(xs) alav += a2 * (np.log10(xs))**2 alav += a3 * (np.log10(xs))**3 alav = 10.**alav # Reproduce the values of table 1. These are approximated using the polynomials, and # according to the article (for the table, set rv=3.08 and rva =...): # If applied to situations where the absolute attenuation AV is either 1 or 10, the # approximations are better than 1.3%. In general the accuracy is somewhat lower. # If the approximation obtained for AV= 1 is used for a turbulent medium where AV= 10 # the accuracy is better than ∼5%. The largest errors occurs at low optical depths. # For x≥1 the approximation is better than ∼2%. elbebv = (alav-1.) * rva # Very well, now, I need to interpolate between these nodes, to get a smooth function # at "any" wavelength. Use Akima splines. Fit the curve in 1/lam space, because the # points are a lot smoother then. Reverse their order, because x must be strictly # ascending. To be clear, this fits elb_ebv as a function of 1/lambda in 1/microns akima_spline = sp.interpolate.Akima1DInterpolator(1./lam_nodes[::-1],elbebv[::-1]) return akima_spline(1./(lams*1e-4))
# ----------------------------------------------------------------------------------------
[docs]def cal00_ke(lams,rv): '''The Calzetti (2000) law. lams in Angstroem. :Notes: This does NOT include the 0.44 correction factor to apply for stellar extinction. ''' # Make sure lams is an array (for the overall consistency) try : len(lams) except : lams = np.array([lams]) my_lams = 1.0e4/lams ke = np.zeros_like(lams,dtype='d') for i in range(len(lams)): if lams[i]/1.0e4 < 0.63 and lams[i]/1.0e4 >= 0.12 : ke[i] = 2.659 * (-2.156 +1.509 * my_lams[i] - 0.198*my_lams[i]**2 + 0.011 * my_lams[i]**3) + rv elif lams[i]/1.0e4 < 2.20 and lams[i]/1.0e4 >= 0.63 : ke[i] = 2.659 * (-1.857 +1.040 *my_lams[i]) + rv return ke
# ---------------------------------------------------------------------------------------- # Following Cardelli, Clayton & Mathis (1989)
[docs]def ccm89_alav(lams, rv): # lams in Angstroem ''' The law from Caredelli, Clayton and Mathis (1989). lams in Angstroem. ''' # Make sure lams is an array try : len(lams) except : lams = np.array([lams]) my_lams = 1.0e4/lams a = np.zeros_like(lams, dtype ='d') b = np.zeros_like(lams, dtype ='d') alav = np.zeros_like(lams, dtype ='d') for i in range(len(my_lams)): x = my_lams[i] if 0.3 <= x and x < 1.1 : a[i] = 0.574 * x**1.61 b[i] = -0.527 * x**1.61 elif 1.1 <= x and x < 3.3 : y = x-1.82 a[i] = 1. + 0.17699 * y -0.50447 * y**2 - 0.02427 * y**3 +\ 0.72085 * y**4 + 0.01979 * y**5 - 0.77530 * y**6 + 0.32999 * y**7 b[i] = 1.41338 * y + 2.28305 * y**2 + 1.07233 * y**3 - 5.38434 * y**4 -\ 0.62251 * y**5 + 5.30260 * y**6 - 2.09002 * y**7 elif 3.3 <= x and x<= 8 : if x < 5.9 : fa = 0 fb = 0 else : fa = -0.04473 * (x-5.9)**2 - 0.009779 * (x-5.9)**3 fb = 0.2130 * (x-5.9)**2 + 0.1207 * (x-5.9)**3 a[i] = 1.752 - 0.316 * x - 0.104/((x-4.67)**2 + 0.341) + fa b[i] = -3.090 + 1.825 * x + 1.206/((x-4.62)**2 + 0.263) + fb alav = a + b/rv return alav
# ----------------------------------------------------------------------------------------
[docs]def alam(lams, ab, av, curve='f99', rv=None, rva=4.5): '''Calculate the value of A_lambda for different extinction/attenuation laws. :Args: lams: 1-D numpy array of float The values at which to evaluate the attenuation/extinction. ab: float The extinction in B (e.g. according to NED) av: float The extinction in V (e.g. according to NED) curve: string [default: 'f99'] Which extinction/attenuation curve to use. rv: float The value of Rv. rva: float [default: 4.5] The value of Rva, if using curve='fd05'. :Notes: To reproduce the values given in NED, set curve='f99', and rv = 3.1. The default value of Rv will depend on the curve used (if not specified). rv=3.1 for 'f99', rv=3.08 for 'fd05', rv=4.05 for 'cal00' and 'cal00*', and rv=3.1 for 'ccm89'. 'cal00*' includes a 0.44 correction factor to derive the stellar extinction. ''' if curve == 'f99': if rv is None: rv = 3.1 out = f99_alebv(lams,rv) * (ab-av) return out if curve == 'fd05': # From Fischera& Dopita (2005), see also Vogt et al. (2013). if rv is None: rv = 3.08 red = fd05_elvebv(lams, rv=rv, rva=rva) return (red + rva) * (ab-av) elif 'cal00' in curve: if rv is None : rv = 4.05 corr = 1.0 if curve == 'cal00*': corr = 0.44 return cal00_ke(lams,rv)*(ab-av)*corr elif curve =='ccm89': if rv is None: rv = 3.1 return ccm89_alav(lams,rv)*av
# ----------------------------------------------------------------------------------------
[docs]def galactic_red(lams, ab, av, curve='f99', rv = 3.1, rva = 4.3): '''Calculate the galactic extinction for a given sight-line, using Ab and Av. :Args: lams: 1-D numpy array of float The values at which to evaluate the attenuation/extinction. ab: float The extinction in B (e.g. according to NED). av: float The extinction in V (e.g. according to NED) . curve: string [default: 'f99'] Which extinction/attenuation curve to use. rv: float Rv value. rva: float [default: 4.5] The value of Rva, if using curve='fd05'. :Returns: out: 1-dNumpy array The ratio of Flux_(unreddened)/ Flux_(observed). :Notes: To follow NED, set curve='f99', and rv = 3.1. The default value of Rv will depend on the curve used (if not specified). rv=3.1 for 'f99', rv=3.08 for 'fd05', rv=4.05 for 'cal00' and 'cal00*', and rv=3.1 for 'ccm89'. 'cal00*' includes a 0.44 correction factor to derive the stellar extinction. ''' tau = alam(lams,ab,av,curve=curve,rv=rv) * (2.5*np.log10(np.e))**-1 return np.exp(tau)
# ----------------------------------------------------------------------------------------
[docs]def extragalactic_red(lam, hahb, hahb_0, curve = 'fd05', rv = None, rva=4.3): '''Calculate the extragalactic attenuation (based on Halpha/Hbeta). :Args: lam: float The wavelength at which to evaluate the attenuation/extinction. hahb: float or numpy array The observed Halpha/Hbeta flux ratio. Can be a 2-D map. hahb_0: float The reference theoretical unreddened Halpha/Hbeta flux ratio. curve: string [default: 'fd05'] Which extinction/attenuation curve to use. rv: float [default: None] Rv value. rva: float [default: 4.3] The value of Rva, if using curve='fd05'. :Returns: out: 1-D numpy array The ratio of Flux_(unattenuated)/ Flux_(attenuated) :Notes: See also Vogt+ (2013), Appendix A. By default, Rv = 3.08 and Rva = 4.3, which gives a curve vey close to that of Calzetti (2000) below the 2000 Ansgtroem bump. Supported curves are 'fd05', 'f99','ccm89','cal00' and 'cal00*'.'cal00*' includes a 0.44 correction factor to derive the stellar extinction. ''' if curve == 'fd05' : elvebv = fd05_elvebv(lam) ehavebv = fd05_elvebv(ha) ehbvebv = fd05_elvebv(hb) out = (hahb/hahb_0)**(-(elvebv + rva)/(ehavebv-ehbvebv)) return out if curve == 'ccm89': if rv is None: rv = 3.1 alav = ccm89_alav(lam, rv) aHaav = ccm89_alav(ha, rv) aHbav = ccm89_alav(hb, rv) return (hahb/hahb_0)**(-alav/(aHaav-aHbav)) elif 'cal00' in curve: if rv == None: rv=4.05 ke = cal00_ke(lam,rv) keHa = cal00_ke(ha,rv) keHb = cal00_ke(hb,rv) if curve == 'cal00*': ke *=0.44 keHa *= 0.44 keHb *= 0.44 return (hahb/hahb_0)**(-ke/(keHa-keHb)) elif curve == 'f99': if rv == None: rv=3.1 alebv = f99_alebv(lam,rv) aHaebv = f99_alebv(ha,rv) aHbebv = f99_alebv(hb,rv) return (hahb/hahb_0)**(-alebv/(aHaebv-aHbebv))
# ----------------------------------------------------------------------------------------
[docs]def hahb_to_av(hahb,hahb_0, curve = 'fd05', rv = None, rva=4.3): '''A function to get the reddening in Av mag, from Ha/Hb ratio. :Args: ha_hb: 1-D numpy array The flux ratio of Halpha to Hbeta (NOT the log!) ha_hb_0: float The theoretical value of Halpha/Hbeta. (2.86 for SB, more for AGNs) curve: string [default: 'fd05'] Which reddeing law to use ? rv: float [default: None] The value of Rv to use. None for the default. :Returns: out: 1-D numpy array The corrseponding values of Av. :Notes: See also Vogt+ (2013), Appendix A. By default, Rv = 3.08 and Rva = 4.3, which gives a curve vey close to that of Calzetti (2000) below the 2000 Ansgtroem bump. ''' if curve == 'fd05' : ehavebv = fd05_elvebv(ha) ehbvebv = fd05_elvebv(hb) out = -2.5*np.log10(hahb/hahb_0)*(rva/(ehavebv-ehbvebv)) return out if curve == 'ccm89': if rv == None: rv = 3.1 aHaav = ccm89_alav(ha, rv) aHbav = ccm89_alav(hb, rv) return -2.5*np.log10(hahb/hahb_0)*(1./(aHaav-aHbav)) elif curve == 'cal00': if rv == None: rv=4.05 keHa = cal00_ke(ha,rv) keHb = cal00_ke(hb,rv) return -2.5*np.log10(hahb/hahb_0)*(rv/(keHa-keHb)) elif curve == 'f99': if rv == None: rv=3.1 aHaebv = f99_alebv(ha,rv) aHbebv = f99_alebv(hb,rv) return -2.5*np.log10(hahb/hahb_0)*(rv/(aHaebv-aHbebv))
# ----------------------------------------------------------------------------------------
[docs]def check(): ''' Make some quick plots to test the reddening functions of brutus, by comparing with the original papers. And make sure I did not mess things up ... ''' # 1) Check Cardelli89 and Fitzpatrick99: reproduce Fig. 7 of Fitzpatrick99 x = np.arange(0.0001,8.75,0.001) lams = 1/x*1.e4 plt.close(97) plt.figure(97, figsize = (15,7)) gs = gridspec.GridSpec(1,1, height_ratios=[1], width_ratios=[1]) gs.update(left=0.1,right=0.95,bottom=0.15,top=0.9,wspace=0.05,hspace=0.05 ) ax1 = plt.subplot(gs[0,0]) ls = ['r','m','g','b'] for (i,r) in enumerate([2.3,3.1,4.0,5.5]): f99_curve = f99_alebv(lams,r) - r ccm89_curve = (ccm89_alav(lams,r)*r) -r ax1.plot(x,f99_curve,ls[i]+'-', label=r'R$_V$ = '+np.str(r), linewidth=2) ax1.plot(x,ccm89_curve,'k--') ax1.grid(True) ax1.set_xlabel(r'1/$\lambda$ [$\mu$m$^{-1}$]') ax1.set_ylabel(r'E($\lambda$-V)/E(B-V)') ax1.legend(loc='lower right',fontsize=15) ax1.text(0.1,11,'Fitzpatrick (1999) - Fig. 7; F99 (-) vs CCM89 (- -)') ax1.set_xlim([0,10]) ax1.set_ylim([-6,13]) # Add the MUSE range because I can ax1.axvline(x=1./(4750./1e4),ymax=0.65,c='k',ls='-', lw=2) ax1.axvline(x=1./(9350./1e4),ymax=0.65,c='k',ls='-', lw=2) ax1.text(1.7,7,r'MUSE range (4750\AA $\rightarrow$ 9350\AA)',ha='center') plt.show() # -------------------------------------------------------------------------- # 2) Compare with Fischera & Dopita 2005 x = np.arange(0.0001,7.5,0.1) lams = 1/x*1.e4 plt.close(98) plt.figure(98, figsize=(10,8)) gs = gridspec.GridSpec(2,1, height_ratios=[1,0.5], width_ratios=[1]) gs.update(left=0.15,right=0.9,bottom=0.1,top=0.95,wspace=0.05,hspace=0.05 ) r = 3.1 f99_curve = f99_alebv(lams,r) - r ccm89_curve = (ccm89_alav(lams,r)*r) -r cal00_curve = cal00_ke(lams,4.05) - 4.05 fd05_curve = fd05_elvebv(lams,rv=3.08,rva=4.3) ax1 = plt.subplot(gs[0,0]) ax1.plot(x,f99_curve,'r-', linewidth=1,label=r'F99, R$_V$='+np.str(r)) ax1.plot(x,ccm89_curve,'g-',label=r'CCM89, R$_V$='+np.str(r)) ax1.plot(x,cal00_curve,'b-',label=r'Cal00, R$_V$=4.05') ax1.plot(x,fd05_curve,'k--',linewidth=2, label='FD05,R$_V$=3.08, R$_V^{A}$=4.3') ax1.grid(True) ax1.set_xticklabels([]) ax1.set_ylabel(r'E($\lambda$-V)/E(B-V)') ax1.legend(loc='lower right',fontsize=15) ax1.set_xlim([0.5,4.5]) ax1.set_ylim([-5,5]) ax1.axvline(x=1./(4750./1e4),ymax=0.65,c='k',ls='-', lw=2) ax1.axvline(x=1./(9350./1e4),ymax=0.65,c='k',ls='-', lw=2) ax1.text(1.7,2.5,r'MUSE range (4750\AA $\rightarrow$ 9350\AA)',ha='center') ax2 = plt.subplot(gs[1,0]) ax2.axhline(y=0,color =(0.4,0.4,0.4), linewidth=2) ax2.plot(x,f99_curve-fd05_curve,'r-', linewidth=1,label=r'F99, R$_V$='+np.str(r)) ax2.plot(x,ccm89_curve-fd05_curve,'g-',label=r'CCM89, R$_V$='+np.str(r)) ax2.plot(x,cal00_curve-fd05_curve,'b-',label=r'Cal00, R$_V$='+np.str(r)) ax2.grid(True) ax2.set_ylabel(r'$\Delta$E($\lambda$-V)/E(B-V)') #ax2.legend(loc='lower right') ax2.set_xlim([0.5,4.5]) #ax1.ylim([-5,5]) ax2.set_xlabel(r'1/$\lambda$ [$\mu$m$^{-1}$]') ax2.axvline(x=1./(4750./1e4),c='k',ls='-', lw=2) ax2.axvline(x=1./(9350./1e4),c='k',ls='-', lw=2) plt.show() # -------------------------------------------------------------------------- # 3) Reproduce Fig.1 of Calzetti (2001) x = np.arange(0.0001,7.5,0.01) lams = 1/x*1.e4 plt.close(99) plt.figure(99, figsize=(10,8)) gs = gridspec.GridSpec(1,1, height_ratios=[1], width_ratios=[1]) gs.update(left=0.15,right=0.9,bottom=0.1,top=0.95,wspace=0.05,hspace=0.05 ) f99_2 = f99_alebv(lams,2.0) f99_31 = f99_alebv(lams,3.1) f99_5 = f99_alebv(lams,5.0) ccm89_2 = ccm89_alav(lams,2.0)*2.0 ccm89_31 = ccm89_alav(lams,3.1)*3.1 ccm89_5 = ccm89_alav(lams,5.0)*5.0 #ccm89_curve = (ccm89_alav(lams,r)*r) -r cal00_curve = cal00_ke(lams,4.05) fd05_curve = fd05_elvebv(lams,rv=3.08,rva=4.3)+4.3 ax1 = plt.subplot(gs[0,0]) ax1.plot(np.log10(lams/1.e4),f99_2,'g:', linewidth=1,label=r'F99, R$_V$=2.0') ax1.plot(np.log10(lams/1.e4),f99_31,'g-', linewidth=1,label=r'F99, R$_V$=3.1') ax1.plot(np.log10(lams/1.e4),f99_5,'g--', linewidth=1,label=r'F99, R$_V$=5.0') ax1.plot(np.log10(lams/1.e4),ccm89_2,'r:', linewidth=1,label=r'CCM89, R$_V$=2.0') ax1.plot(np.log10(lams/1.e4),ccm89_31,'r-', linewidth=1,label=r'CCM89, R$_V$=3.1') ax1.plot(np.log10(lams/1.e4),ccm89_5,'r--', linewidth=1,label=r'CCM89, R$_V$=5.0') ax1.plot(np.log10(lams/1.e4),cal00_curve,'b-',label=r'Cal00, R$_V$=4.05') ax1.plot(np.log10(lams/1.e4),fd05_curve,'k--',linewidth=2, label='FD05,R$_V$=3.08, R$_{V}^{A}$=4.3') ax1.grid(True) ax1.set_ylabel(r'A$_\lambda$/E(B-V)') ax1.set_xlabel(r'log[$\lambda$($\mu$m)]', labelpad=10) ax1.legend(loc='upper right', fontsize=15) ax1.set_xlim([-1,0.3]) ax1.set_ylim([0,15]) # Add the MUSE range because I can ax1.axvline(x=np.log10(4750./1e4),ymax=0.5,c='k',ls='-', lw=2) ax1.axvline(x=np.log10(9350./1e4),ymax=0.5,c='k',ls='-', lw=2) ax1.text(-0.15,8.1,r'MUSE range (4750\AA $\rightarrow$ 9350\AA)',ha='center') plt.show()
# ----------------------------------------------------------------------------------------